Graphene-ruthenium complex hybrid photodetectors with ultrahigh photoresponsivity.
نویسندگان
چکیده
The maximum responsivity of a pure monolayer graphene-based photodetector is currently less than 10 mA W(-1) because of small optical absorption and short recombination lifetime. Here, a graphene hybrid photodetector functionalized with a photoactive ruthenium complex that shows an ultrahigh responsivity of ≈1 × 10(5) A W(-1) and a photoconductive gain of ≈3 × 10(6) under incident optical intensity of the order of sub-milliwatts is reported. This responsivity is two orders of magnitude higher than the precedent best performance of graphene-based photodetectors under a similar incident light intensity. Upon functionalization with a 4-nm-thick ruthenium complex, monolayer graphene-based photodetectors exhibit pronounced n-type doping effect due to electron transfer via the metal-ligand charge transfer (MLCT) from the ruthenium complex to graphene. The ultrahigh responsivity is attributed to the long lifetime and high mobility of the photoexcited charge carriers. This approach is highly promising for improving the responsivity of graphene-based photodetectors.
منابع مشابه
Graphene/nitrogen-functionalized graphene quantum dot hybrid broadband photodetectors with a buffer layer of boron nitride nanosheets.
A high performance hybrid broadband photodetector with graphene/nitrogen-functionalized graphene quantum dots (NGQDs@GFET) is developed using boron nitride nanosheets (BN-NSs) as a buffer layer to facilitate the separation and transport of photoexcited carriers from the NGQD absorber. The NGQDs@GFET photodetector with the buffer layer of BN-NSs exhibits enhanced photoresponsivity and detectivit...
متن کاملDirect Observation of High Photoresponsivity in Pure Graphene Photodetectors
Ultrafast and broad spectral bandwidth photodetectors are desirable attributable to their unique bandstructures. Photodetectors based on graphene have great potential due to graphene's outstanding optical and electrical properties. However, the highest reported values of the photoresponsivity of pure graphene are less than 10 mA/W at room temperature, which significantly limits its potential a...
متن کاملBroadband high photoresponse from pure monolayer graphene photodetector.
Graphene has attracted large interest in photonic applications owing to its promising optical properties, especially its ability to absorb light over a broad wavelength range, which has lead to several studies on pure monolayer graphene-based photodetectors. However, the maximum responsivity of these photodetectors is below 10 mA W(-1), which significantly limits their potential for application...
متن کاملUltrahigh Photogain Nanoscale Hybrid Photodetectors.
A class of ultrasensitive nanoscale hybrid photodetectors formed from carbon electrode-molecule junctions using P3HT:PCBM as photoresponsive semiconductors are demonstrated. The unique device architecture, tunability of nanoscale channel lengths and the optimized contact nature of semiconductor/electrode interfaces led to ultrahigh photogains of 1000 with graphene nanoelectrodes and 1 000 000 w...
متن کاملHigh-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios.
Graphene is a promising candidate material for high-speed and ultra-broadband photodetectors. However, graphene-based photodetectors suffer from low photoreponsivity and I(light)/I(dark) ratios due to their negligible-gap nature and small optical absorption. Here, a new type of graphene/InAs nanowire (NW) vertically stacked heterojunction infrared photodetector is reported, with a large photore...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Small
دوره 10 18 شماره
صفحات -
تاریخ انتشار 2014